# Download and run
python contextual_memory_mvp.py
# Add memories
cms.add_memory("John works at Google and specializes in AI research.")
# Query the system
results = cms.query_memory("Tell me about AI research")
Feature | Description |
---|---|
Entity Extraction | Automatically identifies people, organizations, concepts |
Relationship Detection | Discovers connections like βworks atβ, βcreatedβ, βusesβ |
Semantic Search | Context-aware retrieval beyond keyword matching |
Importance Scoring | Memory relevance evolves based on access patterns |
ContextualMemorySystem
βββ NLP Processor (Entity extraction, relationships)
βββ Context Weaver (Memory creation, linking)
βββ Memory Retriever (Query processing, ranking)
βββ Mobile Storage (SQLite backend, graph relations)
System Stats: {'entities': 48, 'relationships': 15, 'memories': 5}
Query: 'Tell me about John'
1. [Score: 0.348] John works at Google and specializes in AI research...
2. [Score: 0.348] The AI algorithm that John developed uses Python...
β Database created: demo_knowledge.db (77,824 bytes)
contextual_memory_mvp.py
- Main system implementationREADME.md
- Complete technical documentationLICENSE
- MIT LicenseJustin Lane
π GitHub: @aiwithjusl
π LinkedIn: Justin Lane
π¬ Email: aiwithjusl.dev@gmail.com